About Us
  
       

< Back to table of contents

Power and Pedagogy: Transforming Education through Information Technology


Chapter Four - The Span of Pedagogical Possibility

"No one yet had printed books, the preceptor alone had a printed Terence. What one read must first be dictated, then defined, then construed, and then only could he explain it...." Thus a Swiss educational reformer, Thomas Platter, recalled his experience in a school around 1515. Through a long life as printed books became common resources for preceptors and pupils, Platter's own educational experience showed how the spans of pedagogical possibility can change.

Platter's family were peasants from a small village, high in the Swiss Alps. His father died when Thomas was two. At five, Thomas started the school of life, herding goats in the mountains, and by eight, accidents had nearly killed him several times. By luck and quirk, his guardians decided that he would do better to take a long shot and try to gain learning and become a priest.

Essentially two ways then led to this goal, one religious and the other secular, and Thomas tried both. For the religious, he had a brief, disastrous stint at a nearby song-school, a place where a priest trained boys to sing the liturgy and chant the mass, but not to read or to write. If this went well, it might have led to a cathedral or monastic school, but in Thomas's case the song-school went badly -- the priest had frequent bouts of drunken rage, and suffering from child abuse, Thomas withdrew. Then his elders tried the secular route, sending Thomas on the road. They put him, about nine, in the service of a distant cousin, a youth of about sixteen, who was a wandering scholar, a bacchante, going from town to town in middle Europe in search of the elements of learning. As was the custom, Thomas supported the pair, begging for their bed and board, sometimes stealing, rarely studying. After nine years tramping hither and yon across middle Europe, stopping at many schools for short or long, depending on the quality of the begging, Thomas finally settled in Zurich, an unkempt eighteen-year-old, still seeking the rudiments of Latin.

Such was the typical saga of a poor student prior to the era of the printed textbook. The whole system was part of a barter economy: if the schools were good, word got around and too many students would gather, making the begging miserable, and if the schools were bad there would be few students and good begging, leaving learning problematic. When it went well, the idea was to learn how, using Latin, to transcribe spoken text accurately in writing. The basic pedagogy, elementary and advanced, worked like dictation exercises in a foreign language sometimes still do: a teacher would read a passage aloud and students would try to write it on wax tablets and then the teacher or assistants would correct the transcriptions with each student, explaining their errors of grammar, spelling, and the like. Advanced instruction consisted largely of public readings of important texts, which students who had become skilled in transcription could take down for further study, provided they had the means to buy ink and parchment. Thomas Platter did not make it to this level by these means, however.

Until his return to Zurich, Thomas had participated in the pre- modern world of education. Prior to about 1500, educators had to assume that students did not possess a text pertaining to the subject at hand. Since mastery of key texts by priests and scribes was nevertheless culturally important, the basic technical rationale of pre-modern schooling was to find a way to enable a student to make the texts he needed. Thus much of instruction, regardless of level, consisted in dictation, reading a text aloud so that students could write it down, making at least a rough copy of it for themselves. The task of the teacher was to correct the student's efforts at transcription, ensuring that the sense said had been accurately written. Only very late in a student's educational experience did attention turn to questions of the meaning of the material.

In pre-modern education, where the student did not possess the text, learning to read and write, especially in the languages of scholarship, was a big hurdle. How do you enable someone who neither reads nor writes to make the elementary texts and grammars with which he can then learn to read and write? And all this had to be done, not in the mother tongue, but in Latin, the special language of religion and scholarship. Thomas never solved that problem. In Zurich, just on the eve of the Protestant reformation, Thomas encountered a teacher who simply provided him with printed copies of the texts. The problem of education ceased to be one of learning to write down the spoken text and became one of learning to read the printed text.

Thomas's studies then prospered, although they carried him naturally into the Protestant camp and to his family's consternation he took vows of marriage, not the priesthood. He moved to Basel and became a skilled artisan, printer, real estate entrepreneur, and finally a respected, influential schoolmaster. His school was not for wandering scholars, but for the children of the town burghers, securely part of a growing money economy. He negotiated with the city fathers a substantial salary for himself and decent pay for his assistants, one for each class. His students learned from printed textbooks and they moved, in age cohorts, through a graded curriculum. It began by inculcating the skills of reading good Latin, and it ended with the substantive interpretation of significant Latin works and study of elementary Greek. It was a typical, early- modern Gymnasium, designed to take advantage of printed texts.

The School and the Printed Book Platter's life spanned a period of great educational innovation. He and other reformers worked out the basic technology of modern schooling. The most influential among them -- Erasmus, Luther, Melancthon, Sir Thomas Elyot, Comenius, and more -- were great textbook pioneers and prophets of the importance of reflective reading as a source of knowledge and conviction. Others, scarcely less influential -- Loyola, Sturm, Ramus, Ascham, Mulcaster, Rathke, and many more -- worked out the design of the print-based school, developing strategies of competitive motivation, age grouping correlated to curricular sequence, manageable divisions of subject matter, and standards for the training and selection of teachers. Between 1500 and 1650, the key features in the technology of modern schooling were invented and implemented.

Since the start of this technology of schooling, it has developed into an extraordinarily successful system. Contemplate the very big picture -- the world-wide system of schooling that now exists. In the 1985-86 school year, over half a billion children, world-wide, attended primary schools, over a quarter billion went to secondary schools, and nearly sixty million pursued higher education. Humanity spent more than three-quarters of a trillion dollars that year to school its young, an annual amount that has risen to over a trillion by the inertia of inflation alone. Nearly all that effort conforms broadly to the plan of Platter and his peers.

At the few outermost reaches of this system, we would find it hard to recognize the schools as such, textbooks being very scarce and the principle of age-grouping hard to apply. But throughout almost all its world-wide scope, across great differences of national culture, wealth, and political ideology, the schools employ a remarkably common set of fundamental strategies. School systems group children primarily by age, secondarily by ability; they divide the curriculum into subjects, package these into annual installments, and map them onto the sequence of grades, a kind of educational ladder that children climb up as they mature from 5 or 6 to 17 or 18. The whole effort inducts the young, to varying degrees of mastery, into the resources of the printed culture. All of us have been through it.

People like Platter invented this system in the sixteenth century. His childhood education would be very strange to most anyone brought up in the twentieth century. But his school in Basel would be, discounting the choice of subjects, quite familiar. The educational technology of schooling derived from the sixteenth century. In this sense, the strategies of schooling are one of the most mature, fully developed of modern institutions, having evolved over a longer period than the other institutions of industrial democracy. To some commentators, the system of schooling superficially seems newer than it is, for the print-based schools have proliferated remarkably during the last hundred years. But significant changes in the design of these schools did not cause their recent proliferation. Transformations in the social context did, enabling societies to implement the visions of universal, compulsory schooling originated by sixteenth century reformers. Let us reflect briefly on these recent developments so that we can see clearly how old the established technology of schooling is.

Although the print-based schools developed in the sixteenth century, powerful limitations restricted the spread of them until the approach of the twentieth. From the start, these schools were a bourgeois institution, in the original sense of the term -- inhabiting the towns, the burgs. Early-modern schools like Platter's served primarily the children of the towns, and secondarily the children of the elites, in surrogate towns, in the form of boarding institutions. From roughly 1500 to 1850, two limitations effectively restricted the school to the towns, and those limitations both changed significantly in the late nineteenth century, making the recent spread of schools to all segments of the population in almost all parts of the world both possible and necessary.

First, the demographic profile of the over-all population in Western societies, and elsewhere even now, limited the spread of schools. Traditionally, populations had large numbers of children and relatively few adults, a demographic condition that put a premium on apprenticeship and other education strategies that made children economically productive at very early ages. In order to extend schooling to all, not only would children have to stay out of the work force, weakening the productive capacity, but so too, a very large percentage of the adults would need to withdraw from primary production to become teachers. If, for every hundred people, fifty are children and fifty are adults, recruiting sufficient teachers to educate all through schools would be a greater burden on primary production that it would be were there only twenty children and eighty adults. Until recently, only the bourgeois groups in towns could afford and profit from the systematic use of schooling, for they early on developed the demographic strategy of limiting family size, keeping the number of adults relative to the number of children high. The industrial revolution generalized middle class urban demographics and made their schools a more feasible institution for all.

Second, part and parcel with the demographic changes, during the past hundred years transportation changes greatly widened feasible access to the schools. The general movement of population from rural to urban areas helped provide concentrations of a sufficiently large number of families in a small enough area to support nearby schools, but areas of relatively sparse population density remain and here good transportation has been essential to make schooling effectively available. Even outside of rural areas, as many towns grew into cities and many villages into towns, children needed transportation to and from schools. As a result, mass transit, the private car, and school bus systems have had more to do, technologically, with the recent spread of schooling than innovation in pedagogical design or classroom practice. The key pedagogical innovations, the basic instructional design of the modern school, derived from the sixteenth century as educators realized that their students would be able to work from a printed text, whatever the subject, whatever the level.

Printing gave rise to the technical strategy employed in modern schools: to use inexpensive printed texts as effectively as possible as a foundation for educational efforts, redefining the task of education. Formerly the task was to prepare scribes to write text accurately as they heard it spoken or read aloud. In modern schools, the task was to enable a wider group to acquire knowledge and skill by reading printed texts on a wide range of subjects. This task defines the technical strategy of modern schools, which have developed and matured over the past five hundred years, as educators have used the printing press, with the textbook performing a key function in the operation of the whole. The main features of the world-wide system of schooling arise from the way printed materials have determined the educational provisions designed to employ them.

to grasp this point, we might more fully trace out historically the way printing conditioned the invention of the modern school. Instead, for the sake of brevity, consider simply, as a thought experiment, how the physical attributes of books necessarily influence the way educators organize schools, particularly where the controlling intention will be to have students master broad substantive components of the culture. Think simply of books as objects that have a physical reality in contexts of use. It takes a year or so for an adept author to compose a book of ordinary scale and several periods of sustained concentration for a proficient reader to absorb it. Novice readers will need help in absorbing the books they encounter and the function of the print-based school will be to provide students with books and to help them master the printed contents. Certain controlling limits and determinations immediately begin to arise.

Roughly speaking, a competent, disciplined youth, age say of fourteen, can master the contents of five densely printed books, each say 750 pages, eight by ten inches, weighing three to four pounds, by concentrating on them for the better part of the day over the better part of a year, with effective help from others to clarify difficulties and to maintain the regimen. Fifteen to twenty pounds of books is a heavy load for this student, literally and figuratively. To expect a fourteen year-old to handle a heavier load would be unrealistic and for younger students the load would of necessity be lighter. Let us exempt the first five grades from our calculations, for the problem there is less learning from the printed culture than getting ready to do so. Assume that starting at age eleven students can work with fifteen pounds of books per year, five substantial volumes, doing so until they graduate seven years later. Under these assumptions, the intellectual content of schooling would need to fit into about 120 pounds of books, or roughly thirty-five volumes.

These material conditions bring many more characteristics and limitations with them. We have implicitly determined a sequential progression year by year, with the volumes for the child of eleven being set aside in favor of new ones when the child becomes twelve. But mastering all thirty-five volumes will take place over seven years. Can that be one straight march down the shelf of books or does some redundancy need to be included in the volumes? As there have to be gradations in weight, so there have to be gradations in difficulty and some cycling over the years through the full scope of studies will need to occur. Consequently, the scope of the material included in the set of volumes needs to be deflated by a redundancy factor. I do not know precisely what this factor typically is, but guessing low I would put it at one- seventh, meaning that our thirty-five volumes really contain only thirty volumes of discrete material.

Should a student devote herself to one volume only during any particular day, making as much headway in it as she can, or should she work during the day from several volumes, each in turn, for an allotted period? Quite early in the development of schooling, common sense or experience definitively answered: during the day the student should attend successively to several different texts. But that raises the question of how the contents of these several volumes should be organized. What separates one volume from another? This question leads to ever increasing divisions of intellectual culture into distinct subject matters. Periods and days are the material realities of school time -- subjects and lessons are the induced units for presenting the culture through print within the constraints of those divisions of time.

Should students work in unison, each fitting the same lesson into the same time, or should they work along divergent paths -- Julia doing her Latin volume while Henri does his algebra and Simon his geography? Were the latter course taken, the teacher would be continually juggling back and forth from one volume to another, workable perhaps with three tutees, but not a room of twenty-five pupils. Educators quickly developed the practice of having groups of students work in unison, all from the same volume. Recitation from the text entailed grouping students to work, not only from the same text, but also at roughly the same pace, which meant getting students together according to similarities of chronological and intellectual development. When people find themselves together, each doing the same task at the same time as the others nearby, comparisons of each to the others come naturally, and with that a kind of competition to perform the prescribed duties spontaneously arises, and policy quickly capitalizes on it. Such comparative performances become the natural measures of achievement, rather than the teacher noticing how well Julia, setting her Latin aside for a moment, could help Henri get through the difficulties he encounters with his algebra.

Should the thirty volumes that are roughly the maximum that any student can master through the print-based school be the same thirty volumes for all, or should each master a unique selection of thirty volumes? For a variety of reasons the system tends to have all students study the same set of materials. In part, economies of scale in publishing favor this solution and it greatly simplifies the logistics of the school. In part, it results from the decision to have all the students in a classroom working largely in unison. It helps to make units of pedagogical time and effort interchangeable from one class to another and from one school to another. The practice leads to important cultural distortions, however. It amplifies the cultural salience of the things included in the volumes that all will study, and it puts the many things left out in a kind of cultural deficit.

Rather than continue this thought experiment to show in more and more detail how the material constraints of printed books shape the features of the world-wide system of schooling, let us summarize the essential point. Many critics complain that textbooks are too central in the process of schooling. Their complaints miss the mark. Schools as they exist were invented to take advantage of the possibility, arising with the spread of printing, that both students and teachers could always have an appropriate text for any educational encounter. The centrality of the text determines the entire design of the system. Schools designed to use printed texts systematically have been an immensely productive development in the history of education. These achievements have been justly celebrated. Let us, without denigrating those achievements, try to fathom further the limiting constraints on educational achievement inherent in this print-based system.

Implementation Constraints of Print
Big-time basketball players must stoop to go through most doors. Left-handed people find it hard to crank can openers or pencil sharpeners, which usually convenience right-handed people. The width and number of the road lanes and the average size of cars define thresholds for traffic density above which drivers will slow up significantly, causing delays and jams. All such problems exemplify implementation constraints, limitations of effectiveness and the ease of use that arise from choices that must be made in order to implement a technical system.

Any technical system imposes implementation constraints on the functions it helps perform. When a new technical system displaces an old one, it does not necessarily bring with it the same set of implementation constraints as the old had. In the days of horse-drawn transport, towns needed to be close together, no more than twenty miles or so apart, and limitations on manure disposal, along with plodding speeds, would keep contiguous urban concentration from becoming very great. Trains and cars changed those constraints, reducing the need for provincial towns and facilitating the concentration of population in metropolitan centers and associated suburbs. Big cities got bigger and small towns smaller because the implementation constraints of the old transportation system were not carried over into the new.

Implementation constraints are features built into a system in order to make it work effectively. These features do not reflect characteristics that are necessarily desirable, in and of themselves, nor are they always disadvantageous. They are tolerable components of a workable solution, enabling people to make good use of the feasible technology, but in doing that they also set limits on the performance of the system. Significant implementation constraints can last, unchallenged, for centuries over great areas, and then suddenly disappear when new technologies free from those constraints displace the old.

Consider, for instance, architecture. Until recently, in every culture in every part of the world, implementation constraints made it very rare to build a structure more than five stories high. Occasionally that would be done for reasons of monumental ceremony as with various pyramids, or of communicational reach when the muezzin calls people to prayer from the minaret or the cathedral bells toll across the town from high in the belfry. With pre-mechanical architecture, implementation constraints almost always worked to keep buildings low: tall structures were expensive to build and people found them a chore to use, having to run up and down many flights of stairs. Hence it was a natural practice to limit ordinary buildings to a height of five floors or less. In the late nineteenth century, the implementation constraints limiting the height of buildings vanished as new materials, new principles of design, and new resources such as elevators, electric lighting, and central heating and ventilation, all made structures built to an unprecedented scale rapidly feasible. Now in urban areas round the world buildings scaled to the old constraints are exceptions to a completely different rule.

In retrospect, it is usually easy to see implementation constraints for what they are, limiting characteristics of dominant technologies. But from within, while a dominant technology is still hegemonic, it is often difficult to see its implementation constraints as such. Instead, they can appear to be part of the natural order, artifacts, not of the technology, but of the natural laws and necessary conditions on which the technology rests. Thus, it was an implementation constraint of human transportation that no one traveled much faster than the speed of a galloping horse until the early 1800s. When trains started to puff along at speeds that left horses wheezing behind, commentators argued that the unprecedented speed was unnatural and dangerous to the humans who subjected themselves to it, not because the train might crash, but because the speed itself menaced the human constitution. From the perspective of the experience then available, evidence derived from the effects of tornadoes and hurricanes seemed to make the warnings plausible. Of course, there proved to be easy ways to shield riders from the winds of speed and the argument that speed itself was harmful proved absurdly false. Yet it illustrates how difficult it can be, from within a technical hegemony, to see its implementation constraints for what they are, mere accidents.

In an educational system designed to take advantage of printed resources, implementation constraints make educational experience simultaneously fragmented and limited. These implementation constraints will seem to many to be natural necessities, but they are not. Schooling becomes a scattered intellectual experience because of the way the culture must be fragmented into many subjects, with these sequenced for study year by year, in order to implement the use of textbooks in education. It becomes limited because the total selection of the culture that can be included in the official texts is very restricted. Thirty volumes is not much relative to the total range of possibilities. These implementation constraints have dire effects on the nature of curriculum politics and they confront many students with very difficult tasks of integration. They make educational effort less liberal and less integral than it could be.

Through an integral education, a student forms her judgment by integrating her engagement with the culture, forming convictions, preferences, valuations, explanations, understandings that she uses to define herself and her world. To achieve an integral education, a student should construct connections, but our system of schooling produces partitions. As we have seen, to use textbooks, an annual packaging of separate subjects is a necessity. Occasionally students in a subject will spend two or more years on a single text; sometimes they study several shorter texts in one subject in one year. But the norm is one text per subject per year, and this norm exists, for reasons of neither developmental psychology nor cultural coherence. It exists to make textbooks usable.

Imagine students having at hand one gigantic, comprehensive set of texts, covering all subjects from kindergarten through high school, The Complete Compendium: Everything You Can and Should Learn In School. No student could handle the whole set, day by day, and its volumes would not fit in his desk or locker. The material constraints of using books requires segmenting the student's intellectual experience into annual increments. As a result, at best, the student passes through the curriculum, visiting each unit productively in turn. He cannot easily go back to material he studied a couple years before but did not quite get down pat, and he cannot easily reach forward in the sequence, suddenly alert to something slated for use two years hence. Educators often complain of this tendency to lockstep progression, but it is hard to avoid at least in part because it is rooted in the material constraints of texts.

A complex culture can sustain innumerable paths of inquiry in and through it, each with its logic and integrity, where one thing leads to another because a specific rejoinder to a student's particular question leads to further wondering, and then to ensuing responses, new doubts, more solutions, and so on. Individualized learning develops from the inside out in this way, as a student integrates responses to her questions into an understanding that she recognizes to be her own, full responsibility for which she asserts. Historically, the way printing amplified the availability of different texts, enhancing too their quality and dependability, greatly accelerated the individuation of learning, enabling inquiring minds to follow powerful questions to productive answers to a degree that human cultures never approached before. But this great advance had limits, and we can now feel these chafing our pedagogical aspirations. The very accomplishments of the book lead us to want to go beyond the span of pedagogical possibility inherent in it.

Individualized learning is a long sought, imperfectly achieved, educational ideal. The sequence of annual curricular increments greatly complicates the individualization of learning, for it imposes on everyone a single, arbitrary, over-all order. Jenny is fourteen, entering ninth grade, and she will therefore start algebra, do biology, and learn about the Greeks and Romans, because those are things her school covers in the ninth grade. If she does biology this year, it will be chemistry or physics next, not the other way around. Are biology, chemistry, and physics really separate subjects? Well, yes and no. There are surely separate textbooks for each, and universities organize specialists in each in separate departments. They work in different labs and use different instruments, and they read different journals and attend different conventions. But the practicing biologist will draw continually on knowledge of chemistry and physics and it is hard, given any real question within a discipline, to confine the discourse pertinent to it strictly within the bounds of that discipline alone. At the least, it would be helpful to do biology with the chemistry and physics texts close at hand, along with the one for biology, and much else as well. That rarely happens for the ordinary student.

Thus textbooks reinforce tendencies to fragmentation in the intellectual experience of the culture -- this today, that tomorrow. To package the culture for presentation through texts, we cut the life of the mind into pieces, put defining covers around each, and dole them out one by one. This piecemeal pedagogy makes it hard for a student to integrate her studies. The day is riven into periods: the bell rings for English, fifty minutes for As You Like It, whether or not you do, then the bell again, signaling the sudden end of English and the abrupt start of Math. Such a way of organizing work objectifies arbitrary distinctions and makes it hard for a student to take full possession of her learning. It is a tribute to the formative, integrating powers of the human mind that schooling leads as often as it does, despite its false segmentations, to well integrated achievements by its students.

In addition to systematically dissipating a student's intellectual focus, the implementation constraints of printed texts put severe limits on a student's curiosity and concern. This weakens the student's integrative capacities. Only a small part of any subject can be included in the text. What is not included does not count, even though it might break Billy's boredom. As they move beyond the first few years and become acculturated to competing for grades, students themselves often collaborate in their boredom, for they know the system in which they labor. When an enterprising teacher introduces an unexpected and provoking topic, one that they sense probably is not included in the official epitome on which they will be examined, the murmur rises -- "Gee, this is kinda interesting, but are we responsible for it?" The retort should resound -- "Yes! You're responsible for this and the whole of your lives and your world, for everything, and you must judge what things you encounter will prove of worth to you in it." Instead, the honest teacher, also knowing the system, answers with a apologetic nay -- "Well, no, but I thought it might interest some . . . ."

Bored students do not integrate their learning well. They instead miss the point and soon forget whatever they sponged up because it would shortly be required of them. The world system of schooling has everywhere a curriculum made up of desiccated fragments that lack sufficient depth and variety to engage a student's curiosity fully, not because such a bland curriculum is a natural necessity, like pabulum for babes, but because the implementation constraints of print-based instruction permitted nothing else. These implementation constraints make it difficult for students to achieve an integral education. Likewise, they divert effort from liberal education.

Through a liberal education, a student develops the capacity to acquire further knowledge, skill, and understanding without dependency on others. Such responsible self-direction is the mark of the autonomous person. A liberally educated person, confronted with a new challenge, knows how to find resources, has sufficient intellectual self-confidence to sense what he needs to know in order to proceed, can judge what is relevant, can comprehend new material, and work through the difficulties he encounters without depending on external authority for guidance. A liberally educated person has learned to learn, and can respond, a free, self-directing person, to the challenges life puts.186 Significant implementation constraints of print-based schooling discourage attainment of a liberal education. Too often educators seem to propound the fiction that to master any subject, one must learn its official epitome, and the teacher's role is to carry the student systematically through the epitome and to certify his mastery of it. At each step, one might expect interest in having students demonstrate their ability to reach out and grasp new issues and ideas, but testing is often habitually retrospective in orientation, designed to make sure that the student knows what he is supposed to know, where knowing consists in reciting back what has been taught. When this system of testing is decadent, progress through it is entirely passive, simply a function of the student's aging, year by year. When it still has some vitality, progress through it depends on demonstrating command of the given increment, good marks all along, capped by passing the "final exam," an oxymoron if there ever was one, for the final exam recurs term by term, year by year, subject by subject. Incessantly testing whether the student knows what has been taught does not cultivate the idea of a liberal education. Instead, it insinuates the slavish belief that only external authority can validate one's learning.

Of course, within this world numerous teachers work interstitially with interested students to develop powers of self- directed inquiry. But such teachers are often on the defensive. Apologists of the status quo claim that at least their way has the virtue of accountability, whereas practitioners of liberal education spout high-minded platitudes the attainment of which can never be measured. In principle, it would be easy to test whether a student's education is liberal, for all one needs to do is pose new challenges to her and see whether she can independently acquire the intellectual resources needed to meet them, finding suitable materials, advice, and explanations. In practice, such a test has been hard to implement because the intellectual resources manageable in schooling have been so restricted. Problem-solving does not lend itself to textbook presentations. Testing in the print- based system does not even map the full range of what a student has learned; it probes instead how completely the student has learned those materials that authority deems essential, required. Such testing encourages servile, not liberal, education.

Information about how ready a student is to tackle different sorts of problems independently would better benefit the clients of schooling -- colleges, corporations, parents and students themselves, the public at large. Critics and commentators insist that problem-solving should be the focus of the schools, the purpose of which is to help students learn to learn. These strictures signify the importance of liberal education, which can have, not only significant spiritual meaning, but also a real cash- value in a fast-changing world of pragmatic action. The implementation constraints of the current system, however, are fundamentally inimical to these goals. Problems exist as open- ended challenges and one cannot engage in solving them where the scope of relevant material is radically circumscribed and the sequence of its presentation choreographed step by step. Yet we pretend that each student should learn the same thing as any other student as they march year by year through the school curriculum. Why do we do this? That is all that print-based schools can manage. People may have seen it as a natural necessity of sound education, like never moving faster than fifteen miles-per-hour. But really it is a simple implementation constraint that comes with basing the process on a predetermined text. Can it now be done some other way, one that will discard these well-worn implementation constraints?

Navigating Networked, Intelligent Multimedia
Technology is not now entering education for the first time. The schools embody a mature educational technology based on printing. To develop the uses of digital information technology in education, the established technology of schooling will need to be displaced. That can now happen.

Imagine a thoroughly computer-based curriculum. It will reside in a system of networked multimedia. Each student will link to it with a notebook computer. Additionally, small-group workstations will be ubiquitously available, on average one for every four students, and one per teacher. These will be high-powered systems capable of delivering quality multimedia presentations while multi-tasking complex programs in the background. The networking will be very high speed, sufficiently powerful to provide each workstation with its own stream of digitized, interactive, full- screen video and good audio. The library of materials available through the system will be extensive, consisting of a full cross- section of the culture in all its branches and varieties and effective tools to aid its study. These materials will reside primarily on an advanced server system for the school on the premises, with integrated, high-speed links to other servers, near and distant, so that members of study-groups can call for most any material they want and receive it with insignificant delay. In addition to the small-group workstations, all spaces will have appropriately scaled projection monitors or large, flat wall-displays for showing material to larger groups.

For our purposes, the particulars of this system are less important than the order of capacity that they indicate. In a fully digitized culture, the educational resources of the school will be ubiquitously available and they will be far more extensive and powerful than those currently available. With this order of capacity, we can indicate quite precisely how this environment will differ pedagogically from that experienced in print-based schools. Two features of it will be most important.

» First, all the materials pertaining to the curriculum will be accessible to any student or teacher at any time. The curriculum will cease to be a sequence of compartmentalized units. » Second, the scope of the materials included in the curriculum, while not boundless, will be much greater than the thirty stout volumes that it currently can comprise. The curriculum will provide multiple paths to the highest levels of achievement in all domains of the contributing cultures. These two features -- a transformation of scope and a transcending of set sequence -- will profoundly alter the implementation constraints of the current system, radically changing its pedagogy.

With all the school's intellectual resources accessible to all students and all teachers at all times, the curriculum will change profoundly. Currently, the place where all the school's materials might be found is in the school library, which students can use, for practical purposes, only on a limited, exceptional basis. When all the school's materials reside in a multimedia electronic library, accessible interactively over a high-speed network form any place in the school, the library, not the textbook, defines the scope of all the subjects. In effect the student, from his desk, can reach instantaneously into any part of the library, which defines suddenly the universe of knowledge and ideas that a student might study and learn.

This change will have a profound effect on everyday pedagogy, for teaching and testing with reference to a text is very different from what teaching and testing with reference to an electronic library will be. With a textbook, learning means coming to know its content; with a library learning means grasping how to find, retrieve, and understand materials in it that one judges relevant. With a textbook, people generally presume that good students should master all that is in them, although teachers generally decide to leave parts out and to change the weighting of emphasis. And with the practice of "curriculum alignment," the expectation is even spreading that textbooks should include only those items likely to appear on major tests. The rest is a distraction! Currently, teachers plan the sequence of lessons to ensure that students cover the subject, with each mastering as much of the totality included as possible. Of course, the "subject" here is not really the subject, but the sanctioned epitome of it that the syllabus and its associated texts comprise. In reality, the subject includes much, much more than that, which would be found in principle, not in the appropriate textbook, but in the relevant part of the library or in university departments and labs.

A student who finds his subject in a library does not work in the same way as he works with a textbook. A decent library should have many more resources in it than any individual or group can exhaust. If a student can master everything on a subject in a library, we must conclude both that the student is superhumanly able and the library abysmally poor. Learning to work productively in a library entails working in an open-ended realm where the student must make continual judgments about what to do and what not to do. He looks things up, browses, navigates through the many contributions to a subject, seeking materials that will contribute to his understanding of the issues at hand. The pedagogy appropriate in this context will differ from that used when the "good" student is to master everything in the assigned text.

In a computer-based educational system, all intellectual contents and pedagogical resources will be available to all students and teachers at all times, and those materials will be much more extensive and complex than they currently are. Together, these two changes will shatter the implementation constraints of the print-based system. As these constraints disappear, the span of pedagogical possibility will change. What people will be able to learn, what they will need to learn, and how they learn it will shift significantly. Let us reflect on how these changes may soon happen.

 



Table of Contents

Chapter 5