About Us
  
       

< Back to table of contents

Power and Pedagogy: Transforming Education through Information Technology


Chapter Five - Making a New Educational System

Big changes in key institutions are hard to launch, but irresistible once underway. They are tough to start because they need to be many-sided. Existing arrangements are a puzzle of many interlocking pieces. One cannot, for instance, simply replace textbooks with computer programs that do the same thing, only slightly better, for all sorts of other things will have to start changing as well -- classroom layout, teacher training, curriculum organization, the interaction of children in class, relations between home and school, possibly even the professed purposes of the school.

So far, innovators have scaled applications of the new technologies to education almost entirely to the conventions of current practice. It is as if architects had tested the potentials of i- beam frames, elevators, curtain walls, plate glass, and the like only in the construction of single-family homes and five-story brownstones. In tests scaled to prior conventions, the advantages would appear marginal. Interesting possibilities might emerge, but the full potentialities of the new architecture would be far from evident. Historically, architects built the case for new materials, not by improving familiar structures with them, but by putting up new structures that were previously impracticable, a wondrous Eiffel Tower, changing the span of architectural possibility.

High-rise cities have their beauty and sophistication, as well as their despair and discontents. If we use new technologies to create a new educational system, we receive no guarantee that in the most profound sense it will be better than the old, effectively generating a higher humanity. Changes in conditions and contexts are important, not because they compel the stakes of life to culminate in any necessary outcome, be it good or bad. They are important because they alter the dynamics of interaction, allowing the stakes of life to play out in a myriad of ways, some new, some old, some good, some bad. They refresh the game -- some losers become winners, some winners, losers; some visions that practical people could once dismiss with a snort become the realistic grounds for effective action. Changes in conditions shake the kaleidoscope of history, allowing new generations to struggle, again yet anew, with the great issues of meaning and value.

Educators are stuck, world around, with a big, mature system that is nowhere prepossessing in the way it functions. Cross- national comparisons of educational performance, pointing up significant differences in result, are an increasing obsession in professional and public discussions of education. They should not, however, obscure from view the fundamental structural similarities that make the comparisons possible and interesting. Any group of long-distance runners will spread out along a spectrum of performance, but their times will be comparable precisely because they are similar competitors running the same race. The task of technology in education is not to move an also-ran to the head of the pack; the task is to substitute a new, distinctly superior spectrum of performance for the old. That will refresh the game, allowing us to return to the issues of human worth and purpose.

Let us to break away from the structural limitations of the current world-wide system of schooling. Like architecture a century ago, we can make this break because we have new resources with which to work, suspending traditional implementation constraints. We aim to make a new system of education, one different from the system of print-based schooling that has dominated educational effort for the past five centuries. To make such a departure, five components essential in the construction of the given system need to be redesigned with full awareness of the potentialities of information technologies in mind.

» How should we organize educative activity in space and time to make full use of information technology? What should its location and schedule be?

» What well-springs of human emotion and activity should it tap for its driving energies?

» How should we manage the works and knowledge of our culture so that presentation of them through advanced information technologies will best support the educative effort?

» What pedagogical resources will best enable students to explore, select, and appropriate the skills and ideas that the culture proffers to them?

» How can we structure the activities of teaching so that they attract highly talented people and provide them with self- renewing and self-developing conditions of work?

These questions will lead us into considering a complex system in which multiple sets of arrangements function in reciprocal interaction. We will survey this complexity by attending to five distinct topics -- environment, motivation, culture, educational method, and staffing. The constraints of discourse require that we do this in an order, first one then another. Despite this apparent sequence, these topics are, of course, simultaneous facets of a single system. Our isolation of them, one from another, occurs through abstraction in discourse, not in fact. After discussing them in an arbitrary order, we will need to remind ourselves that they coexist in complex interaction.

Educational Design of Learning Environments
We need a starting point: look first at the environment, the organization of educational space and time, not because it is necessarily fundamental, but because it is perhaps the most visible. The basic unit of school space is the classroom, world around. It is scaled for one teacher and an appropriate number of students, about twenty-five, plus or minus 50 percent. The basic unit of school time is the period, which aggregates into the school day, which in turn aggregates into the school year. The period is essentially an hour, including transition time between periods, plus or minus 25 percent, with occasional use of double periods. How can information technologies help alter these basic units?

Taking the problem of time and space first, we cannot be as conclusive about it as we might like without anticipating other matters such as motivation, cultural content, and educational method. In this section, we will consider only how new technologies can open options with respect to the organization of the school. Three concepts will be key in the discussion: asynchronous space and time, responsive environments, and virtual reconstruction. By asynchronous space and time, we mean the ability of people, who are not synchronized in the same place at the same time, to communicate easily with each other in a variety of responsive ways. By responsive environments, we mean the ability to endow spaces and periods with an electronic responsiveness to the particular people in them, with the spaces and periods adapting what is in them and how they are organized to the needs of their particular users. By virtual reconstruction, we mean the ability to use interactive multimedia components to redesign and reconfigure the human experience of existing physical spaces without having to make physical, structural changes in buildings. Asynchronous space and time, responsive environments, and virtual reconstruction can powerfully transform the way schools work.

Existing schools can be viewed as a means for synchronizing diverse activities in space and time. That is what scheduling is all about, and within a particular class, a teacher needs diverse arts for synchronizing effort on the subject at hand. Schooling at its best centers on developing students' skills and sensibilities. In settings controlled by this purpose, the interaction between teacher and students will involve open-ended questions, discussion, and attention to the processes by which students work -- individually and in groups. The class, when conducted by an adept teacher, will have a powerful rhythm and flow, with different students taking different parts at different times, the whole being an intensely choreographed experience, with all taking part, but some taking a more central part than others. Here coverage, in the sense of each student getting a full opportunity to try all the steps in the program, will be at risk, and such coverage is the very thing that school space and time traditionally work to guarantee.

Consequently, the system gravitates to a different, more ponderous synchronization. During the typical period, in middle or upper grades, with attention to coverage increasingly controlling, the interaction between teacher and students will consist largely of recitation, a process in which the teacher incites students to display their command of material and evaluates their performances, good, bad, or indifferent, relative to each other. Recitation may be preceded by explanation in the form of lectures or demonstrations, or it may be based on homework on assigned materials. Recitation may be in the form of verbal answers to questions, with students called randomly or vying for the teacher's attention, or it may be in the form of written quizzes and tests. Whatever the form, the opportunity arises for recitation because a teacher has assigned a unit of material to his students, for mastery of which they are responsible, and the function of recitation is to probe and reinforce that mastery. The underlying idea of synchronization here is that all are doing the same thing at the same time, with the students and teacher marching briskly through the material all in step with one another.

Educational computers can provide asynchronous supports for both forms of synchronized classroom interaction, recitation and discussion. Drill and practice systems allow students to get the benefits of systematic recitation without having to be synchronized in space and time with their teachers or their peers. These programs allow each student to pursue them at his own pace and, in a properly networked environment, at a time and place of his choosing; he does not need to suffer ridicule should he bumble or incur impatience should he be slow; nor need he linger in glazed boredom should he have it down pat while others wrestle laboriously with the items to be covered. Drill and practice programs may have a significant liberating influence in education if they help open the existing organization of space and time, making it unnecessary to group students for recitation in order to guarantee them suitable coverage.

In like manner, computer networks can support a great deal of complicated, inter-personal activity, discussion, that is asynchronous in space and time. Networked multimedia systems will increasingly allow any person, anyplace, to enter into face-to- face exchange with anyone else with remarkable flexibility in time. Currently, electronic mail gives an indication of what will emerge, for it significantly alters the temporal and spatial frame within which consultations between students and teachers can take place. Like the telephone, e-mail allows people to interact independent of place, but unlike the telephone, which requires both parties to be synchronized in time, e-mail does not. Digital-video-mail will gain much of the immediacy of face-to-face interaction, while allowing the parties to be most any place and with a very flexible linkage in time. An intensive, many-cycled give-and-take can occur without the parties needing to be synchronous either in time or space.

By complementing synchronized interactions with a full capacity for asynchronized ones, the physical constraints impeding one-to- one consultation between a teacher and a student can be greatly lowered, and all sorts of new pedagogical groupings may become both feasible and effective. For instance, team teaching is likely to take on more powerful, central significance, with perhaps four teachers -- specialists in language and literature, social studies, science, and the arts -- working the whole day, each day, throughout the year, with a class of eighty to one hundred students, who in small groups would be cooperatively pursuing several long-term projects. Their activity might be spread across several rooms, with everyone moving back and forth between synchronous and asynchronous interactions concerning their tasks at hand -- a face-to-face question leading to a computer consultation and the posting of three e-mail queries, with the answer to one resulting a few hours later in a new subgrouping, and so on. Such an educational space would be much more like an atelier, a design studio, or an architectural office, than the present-day school. Whatever it comes to be like, or unlike, one of the major tasks for educators will be to discover how to adapt the asynchronous powers of computer communications to their pedagogical purposes.

Responsive environments will be a second major means for using information technology to reorganize educational time and space. What is in a name? Each student has one. A teacher fails to be responsive by not learning his students' names and being unable to recognize who each is, what interests them, what their hopes and fears may be. Kindergarten and elementary classrooms, home rooms, develop a marvelous clutter of things here and there and all over the walls, things of meaning to teacher and pupil alike, things responsive to their interests and activities. In middle and upper grades, as students and teachers increasingly move from room to room according to the dictates of the schedule, the environment becomes less personal, an anonymous space occupied for an arbitrary time. Information technologies can do much to make these surroundings more meaningful, more responsive to the people at work within them.

Even with the current state of the art, people who work regularly with a particular computer will customize the electronic microworld that it presents to them. Someone adept with her computer will have her selection of software on it, not just any selection, and over time she will have configured that software to reflect her preferences. She will arrange it on disks the way she likes it and associate programs with icons so that she can manage them without breaking her train of thought. She will build up a complicated sense of electronic space filled with all sorts of objects and functions that she cannot see, but that she has a sense nevertheless of how they orient to each other, and to her, rather, perhaps, like the sense of familiar rooms that a person who is blind builds up. With a few strokes, she can run little programs that reconfigure her working space from one project to another, much like she does when she moves from one room to another. The electronic environment need be neither anonymous nor arbitrary.

Such personalization of the electronic environment can carry over from the personal computer to a network. When the user logs onto the network, he activates configuration programs that set the environment to his style and need, regardless of where in physical space the workstation may be. Portable computers also give an experience of this movable amenity -- pop, in a distant city the familiar electronic work space is right there. These intimations of the possibilities are merely snapshots taken at the base of an ascending curve of innovation. Current networks are slow and awkward; portables are cramped and self-conscious. In due course, before the first-grader is into secondary school, computers of diverse sorts will be all about, hanging on the wall like pictures, encased in a slim writing pad, slipped in a shirt pocket, standing there as a powerful workstation. As we take up Hamlet, the workstation at my place senses who I am, greets me, remembers where I left off two days before, and, along with the rest of the computers in the room, reconfigures itself to reflect the topic and the participants, the wallboards cycling silently through heuristic images, each person's notepad retrieving his jottings, and the workstation nearest the newcomer to the discussion running a quick recap for her.

Pedagogical environments can be made responsive in all sorts of significant ways, large and small. These do not require any great advance towards artificial intelligence. On the contrary, most of it simply involves keeping track of who is who and who needs what, where and when. Essentially, in a well networked system everything is physically in only one place, and it can appear logically, virtually, wherever we wish whenever we wish. Think of all the excuses -- "I lost my homework instructions. . . . My dog ate my paper. . . . I left my book at Jimmy's and Mom wouldn't let me go back for it. . . . Its in my locker. . . . I went to the library but it was checked out. . . . Oh, I thought we were to do page 153, not 143. . . . I missed last class and no one told me. . . ." With a well- networked computer, students should be able to avoid these plights because the educational environment will be more responsive to them.

These forms of responsiveness will become possible because networked multimedia will provide each student access to all the school's educational resources at all times. Another form of responsiveness will become possible because the scope of those educational resources will be much greater than it can be in print- based schools. Philosophy begins in wonder, the ancients said. But it is hard to nurture adequately the wondering of many different students. Informed teachers, school libraries, trips and travel, all help feed the collective curiosity of the student body. But they are hard pressed, under stocked, and infrequent. As a place experienced and as time spent, the school is too often not the locus of wonder in our young. The regimen of the school is historically old; its effects predictable; its ethos all too often fails to command attention and engagement.

To what degree does any given school pulsate as a source of information and stimulation about the world in its full complexity? Many alternative activities -- television and films, after-school work, hanging out in the mall, radio and a ride around to a concert and back -- may actually provide more stimulus to amazement and respect than does the program of the school. Relative to the world of the twenty-first century, existing schools are narrow and simplistic. Television news casually girds the globe and reports historic events from every different culture and commerce brings every manner of product from every manner of place into supermarkets, malls, and mail order catalogues. If these are the cultural wastelands, what are the schools? To transmit the culture, schools must drive the culture, energizing and advancing it, celebrating its ideas and energies more vigorously than other institutions. A robust school that offers access to the whole culture, in all its complexity and richness, through networked, interactive multimedia may regain a lost luster as the main means by which the young can assuage their collective curiosity. To be a fully responsive environment, the school should be the place with the aura of wonder and excitement for the young and the school's time should be the time of anticipation and fervor: the school needs to throb with knowledge and inquiry, with a confident mastery, acknowledged as the locus of creative innovation crafting the common future. Then, indeed, it will be a responsive environment.

Virtual reconstruction will be a third means for using the computer as a system to remake the time and space of schools. In order for innovations to have a substantial, transformative effect on education writ large, they need to be introduced on a wide scale in a concentrated, short period. In a significant transition, there may be a long initial period of gestation, and a long, concluding period where new arrangements reach saturation. But between, when the innovation genuinely takes hold of the world of practice, it needs to spread rapidly, being introduced coherently in many different places over five to ten years. Educators have great difficulty sustaining such a process. Developed societies have huge capital investments in school buildings. These are real structures with corridors and classrooms; electrical systems, plumbing, ventilation; labs and offices and music rooms and a melange of acquired stuff, all designed to function efficiently according to established pedagogical practices, built to last, usually to institutional standards, financed through bond issues and mortgages with long pay-out periods. Over-all the capital replacement cycle in education is fifty years plus or minus and it is hard to focus innovative energies within it.

Reforms that propose alternative designs of time and space, curiously, find no dearth of pioneers. School construction is always going on and many communities prove eager to dress the process up in ideas of reform and renewal. The problem arises when the innovation, to sustain its own dynamism, needs to spread more rapidly than the capital replacement cycle will allow. At first the proposition is easy: "we need a new lower school; let's design it according to the British infant school model." Soon the proposition elsewhere becomes more difficult: "It was just finished! If it means major renovations to the lower school to adopt the British infant school model, we're going to wait until the evidence is more conclusive than it seems to me to be." The capital replacement cycle probably has a great deal to do with the tendency of educators to wax enthusiastic about potential innovations and then a few years later to wane in disillusion with them.

With respect to the capital replacement cycle, the computer as a system has very interesting characteristics. While it is easier to build information technologies into new construction that it is to retrofit existing buildings with them, the difference is not that great. Ocean-going steamships long carried a full complement of sails, and it may not be unwise for electronic schools to be able to function, when appropriate, in a traditional print-based style. If educators can redesign educational space and time with electronic technologies, leaving the existing physical spaces of the school intact, functional if not optimal, then they will have disengaged the innovation cycle from the capital replacement cycle. That will greatly enhance prospects for success.

In doing this, the concept of the virtual is very important. Computer specialists often distinguish between physical devices and logical or virtual devices. In this sense, computer environments are profoundly relativistic. Physical devices are the manufactured, material components of the system. Logical or virtual devices depend on the way those physical components have been configured to appear to the user. There may be one physical storage device, for example a high capacity fixed disk drive on a computer, but it may be configured to appear as several different logical devices, drives C:\> and D:\>, to the user. Conversely, several physical devices may be configured to appear as one virtual device without the user needing to know where those physical devices are and how information he saves is divvied up between them. Very shortly, the virtual reconstruction of spaces will become widely feasible, with physically distinct spaces being joined into virtual rooms where people in different locations can interact as if they were together face-to-face. Schools are likely locations for these developments.

Networks provide the first set of possibilities for virtual reconstruction. Imagine that a school district's science faculty decides to try a multi-grade project involving students from the third, seventh, and eleventh grades. Let's postulate that this is not a little side project where a couple high school students and a few from the intermediate school go to the elementary school for a few hours each week. Instead, it is to be a big deal involving all the students in each grade, each day, buttressed by theories that young children can learn well from older children and that older children can learn well by trying to teach younger ones and that they will form a stronger sense of responsibility and purpose in the process. With each grade in separate buildings, such a plan is nearly unthinkable in traditional contexts unless one were to contemplate the complete redesign of the district's school buildings. With intensive networking and good video conferencing, such an experiment would not be impossibly difficult to configure and there would be relatively little need to restructure the existing school plants. This would be an instance of virtual reconstruction.

All sorts of ways to reconfigure time and space electronically will rapidly arise. For instance, the cost of large flat panel displays that can hang on a wall are decreasing and these can be used to join spaces that stand adjacent, or even half way round the world, in very responsive ways, where glances at one another across the virtual room can meet in a smile and a blush, a nudge and a giggle, or small groups, half here and half there, can converse in a virtual corner. It would be, thus, a strategic mistake of the first order to think that we need to physically reconstruct all the spaces of education in order to adapt them to the use of electronic technology. Rather, we need to use the electronic technology as fully as possible as new architectural elements to create new virtual spaces within the confines of existing physical structures. In this way, the innovation cycle can be set free from the capital replacement cycle and the transformation of education can follow apace.

Multimedia information technologies with powerful networking, tracking, and scheduling capacities can make the very flexible use of space and time possible. For a new system of education to emerge, educators, working closely with established and emergent schools, will need to experiment with such flexibilities, learning to use asynchronous space and time, responsive environments, and virtual reconstruction to further the deepest educational purposes. From the present vantage, we cannot predict the precise features of the innovations that will prove successful, but, one way or another, as educators act on the intuition that new technologies will enable them to reshape pedagogical space and time, they will develop a more effective environment. We are dealing with in- novations that invalidate the common sense that held under prior conditions; our task will be to develop a new common sense, suitable for the new conditions. With the old common sense, edu- cational environments were standardized and predictable; with the new, they will be flexible, diverse -- a challenge to the imagination. The same will prevail with the strategies of motivation at work in these new environments.

Motivational Sources of Education
Think of a fifth-grade classroom. Imagine the class dealing with virtually any subject. The teacher has just provided an explanation of a key point summarized in the text. She asks a question -- some pupils raise their hands and wave eagerly, confidant that they know the answer. Some sit in a studious effort to avoid attracting the teacher's attention, knowing that they do not know and not wanting that fact to be registered in the public knowledge of the teacher or the class. Others seem neither eager nor reluctant, they fidget, raise and lower a hand in ambivalence, thinking they know the an- swer but not being sure, wanting to earn the teacher's commenda- tion, but fearing that, if wrong, they risk rejection or rebuke. These are the signs of instructional competition at work. From the early grades through the highest levels, the existing system motivates children by engaging them in a competitive effort to shine in recita- tion and examination, in which each tries to show that he or she has mastered better than others the information sanctioned to be fit for his or her level and to be correct in the view of academic authority. As a result of this reliance on competition, the educational system functions as a powerful sorting mechanism, and when it becomes clear to many that however they may try, they have lost the competition, they drop out.

It is remarkable how thoroughly existing educational systems, around the world, have been adapted to harness competitive motivations. It is very hard to find arrangements in schools that have been designed to encourage children to act from other motivational sources. Undoubtedly the reasons for this reliance are complex, and certainly one among them is the important fact that competition is a very powerful, effective motivator. But there are other powerful motivators, among them cooperation and it is remarkable how few educational arrangements have been de- signed to motivate children to learn through cooperation. The reason for this imbalance between competition and cooperation may have had much to do with the logistics of working with printed information.

Think of a ninth-grade teacher, preparing a unit on feudalism, lamenting -- I can't have them do group projects. There just aren't enough worthwhile materials reasonably available to them. New York City has all sorts of resources, but it doesn't really help -- those who would need to go to the Cloisters wouldn't be able to get there without all sorts of complications. The school library is good but inadequate and they can't just simply use the high-school annex to the New York Public Library -- we either stay in the school or arrange, all together, to take a trip. How do I get some to the Met, others to the Morgan, and a couple into the stacks at Butler Library? How can projects be done at a high academic level in a routine way?

If it is hard to do group projects at a high academic level in a routine way in New York City, it is far harder, most other places. Sadly, serious information management problems discourage inquiry and cooperative learning, problems that must be solved if these alternatives to competitive learning are to become practical, everyday alternatives in mass education. Competitive motivation arises when a group of students start from an appropriately equivalent basis, usually as measured by age, and each is then asked to master a limited, standardized body of material, with goods -- praise, grades, promotion, and acceptance by the college of choice -- being distributed in proportion to how well, in comparison to others, each performs. From the point of view of information management, this practice is very efficient; it is essential in establishing the comparison that all work with the same body of subject matter. This creates a large market for inex- pensive, well-chosen, clearly-presented selections, which textbook publishers compete to provide.

Cooperative learning does not make sense in situations where each student starts with the same content with the goal of mastering more of it than anyone else. Cooperation aims at having participants do different things and then coordinating their accomplishments in a common achievement that exceeds what each would manage alone. In educational situations this puts far greater strain on the information resources available to the cooperating participants. Ideally, for robust cooperative learning, students should face an expansive horizon of questions, armed with extensive resources to pursue their inquiries in many directions to considerable depth. If the questions and resources available are limited, their cooperative effort will not make much sense and different members of the group will find themselves working at cross-purposes with each other, repeating each others' efforts, and vying with one another to do the most with the few resources on which all converge.

For centuries, educational reformers have contended that cooperative learning would be a good thing, and occasional examples of learning by working together to solve real problems keep the ideal alive. It has been very hard, however, to provide the intellectual resources to sustain good cooperative learning in most educational settings. The practice has worked best with the very young, where relatively limited materials will sustain the effort, or at the most elite levels of education where bountiful laboratories and libraries sustain the extensive specialization of inquiry that cooperative learning generates. For the age between these extremes, cooperative learning has been very difficult to implement. What materials will be needed to have twenty fifteen- year-olds do a two-week unit on feudalism according to the principles of competitive motivation? Each will need a copy of a well-written text and regular attendance to a teacher who can provide supplemental explanations, moderate exploratory discussions, and then manage recitations and a test. What materials will be needed to have those students spend two weeks cooperatively exploring the history of feudalism, drawing together at the end a presentation of their results? The range of possibly pertinent materials is nearly limitless and the possible roles a teacher might take in the effort are almost boundless. Conse- quently, the information logistics of cooperative learning strain the print-based system.

Electronic information management technologies will significantly diminish the logistical constraints on cooperative learning. One of the simplest examples of such change involves the problem of movement. Traditionally, inquiry meant that children had to leave the classroom to go to the library or other locations of specialized resources. This usually was not efficient, introducing confusion about who was where and wasting time in excess movement. With inquiry in a well-networked electronic environment, the children can access specialized resources, almost instantaneously, with very little waste of time or effort. Such changes in logistics can have profound effects on the experience of working together. Traditionally a simple decision -- "I'll get this and you get that" -- would draw a cooperating pair apart, often to quite different locations, perhaps with one getting stymied on the way, but unable to tell her partner of the problem until long after either could do anything about it. In an electronic environment of information management, the two can allocate their effort while remaining in close proximity, physically and intellectually, often checking on the implications of what each is finding for the other.

Questions of motivation link profoundly with those of assessment. As the logistics of cooperation often impede cooperative motivation in education, so the character of assessment discourages it. To be blunt, cooperative behavior in competitive testing amounts to cheating. And many believe that the way schools sift talent through competitive testing is one of the main social functions performed by the educational system. Let us examine the case.

Credentialing through education may, in fact, be a poor way to distinguish who can best do what work. Credentialing may not be a function performed by education; rather it may be a function performed for education. Numerous important domains develop effective distinctions about who can do what without much recourse to educational credentials. Exclude the educational drop-outs from the computer industry and you would exclude a great portion of its talent. Businesses, which have a high stake in promoting people according to their capacities, do not usually do so by recourse to competitive tests. Rather, they observe how employees perform under diverse conditions, often in situations where each must cooperate with others to get a job done. Far from existing in order to credential capacities through competition, schools and society may engage in such credentialing for a quite different reason.

Consider the following hypothesis. Effective schooling is important to the smooth functioning of an industrial, bureaucratic system. Compulsory education laws reflect the importance of such schooling and they are difficult laws to enforce. Schooling as it exists is not intrinsically engaging to many students and they need extrinsic reasons to bear with the drudgery of getting an education. Police power is not a very effective way to enforce compulsory schooling laws and most societies try to advance other, more positive incentives and rationales for conforming to educational expectations. One way to develop such incentives is to attach educational credentials as preconditions for many types of employment. It is not that such and such education necessarily determines who can do the associated work, but often the reverse: qualifying for an inside track to various forms of work provides the incentive for students, urging them to buckle down and reach such and such an educational level.

If education were more intrinsically engaging, and credentialing through competitive testing were not needed as an incentive, what might assessment then accomplish? Its first function would be diagnostic. Assessment currently inhibits good educational diagnosis: in the face of relatively predictable tests, students avoid taking risks and work systematically to gloss over their deficiencies. Would medicine have developed if people had strong incentives to hide their symptoms? Were education to be, like health, an unequivocal intrinsic good for people, they would want pedagogical assessments that were diagnostically effective, revealing their weaknesses in ways that would help them to take measures to improve. A second function of assessment, were education more inherently involving, would be demonstrative. Here competition might play a significant role, but it would be more sportive -- "Yo! Look! Here is what we can do!" When doing something meaningful for themselves, people like to show their accomplishments off to others in the hope of recognition from those who can appreciate the art and effort of the work. Here, the opportunity for assessment will lead a student to create a portfolio, presenting those accomplishments that best represent her skills and values. A computer-based system of education will need to provide students and teachers with good diagnostic tools and with ample opportunities for creating meaningful work, along with resources for preserving and presenting it to interested audiences.

Issues of motivation and assessment are deeply human issues. In making a new educational system with the resources of digital technologies, we risk paying too much attention to passing details of the technology. What is at stake with the introduction of computers in education is the human use of human beings, and the key issues are not technical. They are instead issues of political and cultural interaction, emotional fulfillment, and cultural achievement. Educators are passing through a portal of opportunity. Once they have defined the form of the technology, it will sternly reinforce the theory of motivation they have built into it. But for now, educational technology still has a protean motivational character. In giving shape to it, we should attend to the deep and difficult questions.

» How should we implement systems to support cooperative in- quiry?

» What size and structure for cooperative groups will work best for different ages and activities?

» How should students, teachers, and the public assess performance in cooperative settings?

» How should curriculum designers organize knowledge and tools of inquiry and expression in order to support learning by the members of study groups?

These, and many similar questions, need serious examination in order to broaden the motivational energies effectively harnessed in a technology-intensive educational system. The same primacy of the human issues over the technological will be evident as we consider how educators should organize the resources of the culture for use in a computer-based system of education.

Organizing Culture and Knowledge
In making a new educational system, the most difficult task will be reorganizing the culture to adapt it to the use of digital technologies. This assertion can be easily misunderstood. It does not mean that the computer as a system should suddenly become the controlling reference point in making cultural choices. But it does mean that the computer needs to be taken into account in the process. It should not determine what the curriculum comprises, but it will shape how educators organize the materials of the curriculum, and the effects on that may be sufficient to alter weightings, making some current concerns insignificant and other matters, now trivial, quite prominent.

A similar assertion with respect to another domain can clarify what is at stake -- in making a system of automobile transportation, the most difficult task was redeveloping the road system and transportation support industries to adapt them to the use of cars. Where roads went still depended on where people were and where they wanted to go. But the design and engineering of roads had to change substantially -- surfaces well adapted to horses hooves were not suitable for cars and the livery stable had to give way to the gas station and the multinational companies that provide their products. To work well with computers, educators will need to redesign the curriculum through and through, still ensuring that it serves humane purposes, but transforming many of its characteristics, ignoring hooves, as it were, and attending to tires.

Consider one other point at the outset. Curriculum issues are presently controversial, with different visions of how educators should select elements of the culture for presentation to students at the heart of the controversy. To construct a curriculum, one must evaluate and select from the sum of human acquirements, narrowing the infinite range of possibilities to a finite field, one that nevertheless exceeds the power of acquisition of any individual by a wide margin. Debate about such selection now splits between proponents of "cultural literacy," who seek a fairly narrow, canonical selection, and advocates of "multicultural" approaches, who call for a broader, more inclusive selection. In thinking about making a new educational system through the material agency of digital technologies, our purpose should not be to advance one or the other side of this debate. The positions within it do not stand above the implementation constraints of the current system. The terms of the debate between cultural literacy and multicultural education will be reshaped substantially by the development of a new system of education that uses information technologies with full effect.

Within the current curriculum, we squeeze WASP culture as if it were in a cider press and then we sprinkle in cloves and cinnamon from here and there, casting Hispanic and other great literatures aside to rot unused. If very serious constraints on the scope of the curriculum did not exist, few critics would call for a canon nearly as narrow as that being now propounded. The real canon of worthwhile books by dead, white males who wrote in European languages greatly exceeds the capacity of any single student to master, but it does not exceed the capacity of the collective student body. So too for dead white females, or for blacks, or Asians, Indians -- whatever the adjectives. To put material into the traditional curriculum, one had to limit every field drastically, excluding most of what was valuable in it. To do that, one had to generate ludicrous arguments -- something to the effect that Dickens, or some other author, one among many peers, is the nineteenth-century English novelist that all our juniors must read, in one or another selected text.

If one can give students access to all the canons, each in their full scope, accentuating the works of greatest formative power in each, then students will have much better resources from which to choose. Where all the canons, in their full complexity, can be included among the working resources of the school, it is hard to fault the multicultural argument, that each student should be able to start her ascent through the resources of her culture at a point that recognizes and celebrates the ethos of her origins. We can accept the schema theory that proponents of cultural literacy advance, the idea that people need complex frames of reference, filled with suggestive particulars, in order to apprehend complex ideas actively. But it is only in the context of a culturally impoverished school that anyone need consider the proposition that a robust culture, engaging millions in its participant creation, need be founded on a single schema shared by all. The school should vibrate with variety. The electronic school will support numerous cultural literacies, between languages and within languages. With new technologies we can fill the school with a wealth of materials on a scale hitherto not contemplated, providing each student with resources for finding her unique way, in the light of her animating interests, through the wonder of possibilities. This is the promise of networked, intelligent, multimedia.

We can create a new system of education by redesigning schools to take advantage of networked, intelligent, multimedia. Each of these terms signifies technical developments that will have significant effects on the cultural selection of the curriculum. That everything is networked will radically change, for practical purposes, the cultural resources available on the student's desktop, displacing the sequential curriculum with a cumulative one. That "intelligence," the ability to calculate all manner of expressions, resides in those resources will alter the allocation of effort that traditionally educators have devoted to inculcating such skills, de-emphasizing formal acquirements in favor of intentional achievements. That the system makes it easy to store and retrieve multimedia, as easy as it traditionally has been to store and retrieve printed works, will broaden the forms of representation used in education, reducing the reliance on verbal skills, expanding multi-modal study. These three changes will aggregate into a change of major significance in the cultural politics of curriculum design -- through the era of print, the tight confines of the curriculum have entailed a politics of exclusion, which will now give way to a more expansive, creative politics of inclusion. Let us look at these developments in turn, remembering that in actuality they coexist and function in reciprocal interaction.

Let us begin by noting the effects of networking, which will displace the sequential curriculum with one that is cumulative in character. As we have seen, the logistics of working with printed texts have imposed the sequential property of the existing curricu- lum. Developmental psychologies delineated the sequences of major stages in the child's growth. But educators should not exag- gerate the degree to which psychological development determines their curricular sequences. That world history should be a tenth- grade subject and American history a eleventh-grade one, or that biology should precede, or follow, physics or geology has little to do with the developmental characteristics of children. It is largely a conventional solution, one among many, arising from the need to divide the curriculum up into discrete subjects that can be pre- sented in some sequence, according to the school calendar. The need for sequence is inherent largely in the constraints of print, not those of psychology. And whether it should be this sequence or that sequence is comparatively an inconsequential question.

What does it mean to move from fifth to sixth grade? A child who does so usually changes teachers and rooms, sometimes even a building, but these are not the essential changes -- the child could move from fifth to sixth grade while staying with the same teacher in the same room. What changes from one grade to the next is the curriculum, and most importantly the set of textbooks the pupils use. Sixth-grade texts differ from fifth-grade texts and so on and as the child progresses through school she does not cumulatively carry the texts from prior grades around. Students in any particular grade find it hard to regain access to the materials studied in prior grades, without somehow going backwards, and they find it even harder to anticipate access to materials slotted for grades higher up. Unable to move easily, back and forth, pupils experience the curriculum as a set of sequential studies. The costs are high. If a pupil did not get one part of the sequence, the omission can be portentous, not because the sequence is the only way things could be reasonably mastered, but because, once missed, the opportunity to make it up may be very hard to regain.

Students will have a very different relation to a computer-based curriculum, assuming that the whole body of culture and knowledge relevant in education has been integrated into a comprehensive system, any element of which they can access at any time from any place in the school. With continuous and ubiquitous availability, the sequence of grades would loose much of its meaning and students would experience study as a cumulative effort. If we think of learning as a causal problem of production, a metaphor of linear sequence, in which one thing leads to another, will seem natural. In this context it is easy to believe that what frequently comes early in the sequence must come there. If we think of learning, however, as an interpretative problem of comprehension, we will generate a different metaphor, one of extended envelopment, with the inquiring mind moving on a broad front, an advance here and another there, until it has confidently occupied the whole field. The sequences by which people come to understand a subject through continuous envelopment are infinite in number and unique to each person.

A smart, computer-based curriculum should be able to sustain an infinite number of paths through it, and it should be able to provide each student with clear reports about what she has so far covered, regardless of the path and sequence she has taken. This learning should not simply produce knowledge, but further elicit comprehension. Educators will develop such a cumulative curriculum as they ask questions such as these:

» What technological resources will best make all the knowledge, skills, and ideas in the curriculum continuously available to all students at all times?

» If the subjects of the curriculum become more cumulative, will the mix of activities that are useful to students change, and if so, how?

» Will there be a set of essentials, that must be mastered in a mandatory sequence, with the new system, and if so, how will this component of the curriculum relate to less sequential, less mandatory parts?

» What will happen to distinctions between subject-matter areas if all components of the curriculum are accessible to all students at all times?

» What tools of access, orientation, and expression will be needed by students to sustain their work with such a comprehensive curriculum?

In addition to the shift from a sequential to a cumulative experience of the curriculum, a computer-base for education will shift emphasis from formal elements to intentional contents. "Formal elements" refers to the myriad tasks in which students are required to learn to do things the "right way." Insofar as intelligence can be build into computers, it is this kind of intelligence. They are good at formal operations. They multiply accurately and fast, and they can spell unerringly although they are not good at discerning whether the word they have spelled is indeed the one that conveys the sense the author intended. Computers thus are generally correct but dumb, pedagogically very desirable characteristics, for that can free students to concentrate on being approximate but smart. If students can learn to combine the best of each, they will become both correct and smart, and for this purpose, stress on the intentional contents of the culture will become educationally very important.

Take the example we just introduced, proofreading. Skills of good proofreading with word processors have been radically changing. Not long ago, good technique encouraged proofreaders to disengage entirely from the sense of what they were correcting. One had to look separately at each word and punctuation mark, ideally with one person reading the master copy aloud with the corrector verifying that each word and mark that had been read was correct upon the proof. With a word processor, the allocation of effort becomes significantly different. The computer is an attentive demon at picking up typos and outright errors, but it is a complete boob when it comes to situations where the wrong word appears, a "wither" in place of "either," a "structure" in place of "stricture." To pick up this sort of error the proofreader needs to attend closely to the sense of the text, to treat it as an intentional work the meaning of which should make sense.

As intelligent tools become ubiquitously available to people, the traditional stress in schooling on learning how to perform correct calculations will diminish in importance. But in its place, a premium will attach to the ability to perceive when something that is formally correct is nevertheless wrong because someone made a mistake in entering one or another element in the calculation. To do this, one needs to be, like the new style proofreader, alert to the intentions associated with the matter in question, able to see that the result generated is absurd relative to its controlling purposes. The rising demand that educators concentrate less on inculcating low-level skills and attend more to higher-order thinking skills reflects the importance of this shift, and a good deal of experiment will be needed to discover how to effect it well in the process of making a new educational system.

A third shift will be a function of the use of multimedia, replacing the dominant verbalization of our culture with modes of thought and expression that are more fully multi-modal. For five centuries, written materials have been the main channels of access to culturally significant knowledge. This dominance of written communication arose because printed texts afforded a level of ac- cessibility radically greater than did other modes of cultural ex- pression. Access to printed materials could be general, efficient, and enduring. Access to other forms of cultural embodiment was comparatively restricted, troublesome, and transient.

To grasp this point, consider the theater, the drama, and its place in education. Selecting the drama reminds us that multimedia are not new. Their significance pedagogically may simply be growing of late, however. One often encounters the text of Shakespeare's Hamlet and other great plays as works taught within the curriculum. Producing one or another drama may be a significant extracurricular activity, and teachers will often encourage students to see a professional staging of plays, should such performances be accessible. Nevertheless, the performance, whether produced by students or professionals, has been generally less important educationally than the text of the drama because access to the performance has been highly idiosyncratic and temporary, whereas access to the text has been general and enduring.

In the era of print, written materials have dominated educational effort from the most elementary to the most advanced levels because these have been the materials to which access has been general, efficient, and enduring. Engravings, woodcuts, and other forms of printed images might seem to be a partial exception to this assertion, except that accessing them required one to manipulate the written language, not pictorial images. Thus, to retrieve pictures of Chartres Cathedral, one uses written catalogues and indexes. A radical departure is afoot because now electronic information technologies can provide general, efficient, and enduring access to a much broader range of culturally significant materials: recorded performances of a play can be as easily retrieved as its text, and the retrieval process need not be mediated by words. Explore for a bit why the educational consequences of this development will be vast.

Networked, multimedia systems will provide general, efficient, and enduring access to cultural works of nearly every form conceivable. In the era of print, written works had a cultural usefulness superior to other resources. People could distribute, store, cite, retrieve, and use printed resources far more effectively than they could work with other forms of cultural expression. Essentially, printed materials have long been subject to logical retrieval, whereas other materials have still entailed physical retrieval. A printed work would be distributed in many different locations, and one could refer people to it without knowing the particular physical location of the particular instance of the material that they would consult. Thus one cited editions -- Plato, The Republic, Book IX, 592b -- the numerous instances of which are scattered at many places. One could not reference paintings, plays, sculptures, and buildings, in contrast, in this generalized way -- they exist in unique locations and access to them can require taxing trips, even a pilgrimage. Owing to this superior accessibility, printed materials, usually written materials, have more and more mediated the production and communication of knowledge in modern culture.

Let us sum up this development: in the era of print, verbalization increasingly dominated education. "Verbalization" here refers not only to the spoken word, but even more essentially to the written word and even conceptualizations communicated through the symbolic notations of mathematics and the like. In its most comprehensive form, the basic proposition of verbalization is that higher-order thinking consists in manipulating symbolic notations that have been written down and reproduced through printing.

Slowly through the twentieth century, and building rapidly at its end, other modes of exchanging information, ideas, and knowledge between people are gaining cultural power relative to printed text. For centuries, texts have been available "at any place at any time" -- that has been their power. With the rise of the broadcast media, first speech through radio and then the moving image through television gained part of the power of print, becoming available "at any place," provided one tuned in at the right time. The recording industry gave music full accessibility, independent of particular place and time. Video tape is giving the same accessibility to the moving image, enabling one to view a film at any place at any time, and very soon, with fully interactive multimedia systems, the superior accessibility of text compared to other forms of expression will completely disappear.

When people speak about interactive, multimedia systems, they are speaking about a process by which the full gamut of human expression will integrate into one complex system, with all components, regardless of form, being generally, efficiently, and enduringly accessible. This integration, enhancing the accessibility of all forms of expression, we will call multi-modal, as distinct from verbal. As "verbalization" describes far reaching assumptions about the relation between words and symbolic notations to higher-order thinking, so we here use "multi-modal" expansively to situate reflective thinking in pre-linguistic forms of perception and awareness, which may then be expressed through words and symbolic notations, or through images, sounds and all manner of associations and actions. In this sense, the multi-modal is not a mere opposition to the verbal, not a simple alternative to it, but a Hegelian Aufhebung of it, the upheaval of it into something else in which the original form remains nevertheless included and preserved in the new. The multi-modal in this extended sense thus includes the verbal as one among a number of different forms of reflective thinking: it challenges people to integrate all those forms into a comprehensive and many-sided culture and education. A discernible trend toward multi-modal education is already beginning to take hold with the spreading use of videotapes in schools. This trend will accelerate with computer programs that provide for the multiple representation of important concepts and then with the full-fledged introduction of networked, intelligent, multimedia. Its historic effect will be to broaden effective participation in the culture greatly.

These three shifts -- from the sequential to the cumulative, from the formal to the intentional, and from the verbal to the multi-modal -- will combine to reshape the cultural politics of the curriculum most profoundly. One of the least attractive implementation constraints of the print-based curriculum has been the cultural politics associated with it. The narrow scope of the curriculum has structured this politics, which has been, from the sixteenth century on, highly exclusionist. When the core contents of the curriculum narrow down to a restricted set of materials, dominant groups will use their power to exclude exemplars of competing visions. Humanist schools quickly became pervasively humanist, insisting that all materials in the curriculum pass muster according to standards of good Ciceronian usage. Protestant schools became pervasively Protestant; Catholic schools self-consciously Catholic. And the process continues.

Even as principles of political and cultural toleration have spread, exclusion has remained the controlling principle of curriculum politics. Dissenters have not rallied for inclusion; rather they created their own separate academies. Thus we now have schools representing the interests of many minorities, each with a tight curriculum reflecting the sponsor's parochial preferences. Where minorities have addressed the dominant curriculum, they generally have tried to exclude material they found offensive, keeping pejorative references to themselves out of textbooks or condemning the teaching of threatening ideas. One might expect minority groups to follow a more positive course, to seek inclusion in the curriculum of the most powerfully educative resources associated with their experience and vision, but that rarely happens, for the logistics of the print-based curriculum are simply too constrained. In truth, the print-based curriculum cannot comprise a full, comprehensive selection of the best that has been thought and said, but only an arbitrary subset of it, one defined by a nationality, a religion, a class, a race, or a gender.

For centuries, the necessary narrowness of the curriculum has distorted discussion of the educational value of the cultural tradition. In assessing the worth of its myriad elements, educators must make ludicrous claims that a particular work stands above all others. It is like our great art museums that stash away in vaults vast numbers of important paintings because they have space to hang only a small part of their collections. The case for showing this and storing that is marginal, yet its significance for what the public sees is absolute. The most copious anthologies leave out much more of substantial educative worth than they include. A good sequential curriculum will reflect clear choices and present to students a coherent, authoritative selection because the print- based education functions that way. A new educational system will, however, develop a different way.

A curriculum based on networked, intelligent multimedia will encourage a different cultural politics. It will be greatly more inclusive in scope. Gone will be the finite body of subject matter, which the system holds to be teachable in its entirety and which it therefore authoritatively holds students responsible for learning. The idea that good learning consists in mastering precisely what has been taught will no longer hold. With multi-faceted curricular resources, which can sustain many valid paths of inquiry within them without any inquirer exhausting all their contents and permutations, one cannot specify precisely what has been taught. The computer-based curriculum will comprise far more material, all of it educationally worthwhile, than any individual will master. The process of education will be one in which each student develops his unique selection of it all and the task of his educators will not be to determine exactly what he selects, but to help him extract the fullest education from those elements that he does choose.269 In such a curricular environment, the thrust of cultural politics will be inclusive. Groups will find it hard to compel the exclusion of things they dislike. Instead, their task will be to ensure that the curriculum includes their visions in the most effectively educative form possible. In order to grasp what this task may entail, we need to turn our attention from the question of curriculum contents to the pedagogy that may guide their study. In making a new educational system, the processes of learning may themselves change.

Toward Computer-Based Educational Methods
With the print-based system, education has consisted primarily in imparting an authoritative selection of material to students who are responsible for learning it. True, the print-based school in fact presents to each student much more than he can learn, and the better the school, the more this is the case. Yet the controlling idea of the good student is not that of the wily navigator on the open sea of information and ideas. Rather the controlling idea is that of the student who masters, fully and efficiently, the materials sanctioned by the syllabus, the text, and the test.

With the electronic system, the scope of the authoritative selection of material will jump significantly and the student will no longer be responsible for simply learning it in full. Instead the student becomes responsible for intelligently exploring it and taking from it a unique but sound and useful sampling. Formal learning thus becomes much closer to experiential learning. The student needs to become a skilled explorer, not a docile learner; the teacher becomes, not the master, but the native guide, like Vergil to Dante, interpreting, elucidating, cautioning, exhorting. Good teachers have always worked this way, but they often find themselves in tension with the system when they do. That tension will diminish with the full development of computer-based education. A different pedagogy will be at work.

Working pedagogies are like mutts on the loose -- both gravitate to a mongrel type, mixing traits in a rough and ready way, adapted to its milieu. The pedagogical prescriptions of educational research are like the pedigreed breeds of show dog, strains carefully selected and maintained with extreme vigilance, but quite incapable of self-preservation when loosed at large. To change the mongrel type, it avails little to pursue selective breeding; one must significantly change the milieu. The computer as a system will so change the milieu.

In the current milieu, the pedagogical task starts from an authoritative, finite selection of material that each student is supposed to master. The working pedagogy divides the material into lessons, each with its controlling objectives. The teacher presents the material, trying to engage the students' interest; she explains it, encourages students to practice their mastery of it, and finally tests that mastery through recitation or other means. A computer-based milieu will differ significantly in that it will present to students far more material than they will or can learn, separately or collectively. In that milieu, the current working pedagogies are not particularly useful.

When students confront more material than they can learn, the concept of lesson looses its pertinence. The alternative to the lesson is familiar in the pedagogical literature of this century -- the project. Progressive educators prematurely introduced the project method in a milieu in which it could not thrive. They propounded it for reasons of theoretical preference in an educational milieu that was still unchanged and conducive to a textbook pedagogy. The project method required more extensive intellectual resources than the average school or teacher could command. As soon as the project method went much beyond the laboratory schools, it reverted to the mongrel type. Networked, intelligent multimedia will bring to schools the conditions conducive to the project method. A new system of education will surround each student with extensive intellectual resources, whereupon the project method will come into its own, not as the pedigreed breed of educational researchers, but as the hearty mongrel of the new environment.

Where more is presented than can be learned, the project method will thrive. What are the key features of a project, particularly one that takes place in an unbounded cultural environment? To begin with, a project has a defining task, an energizing challenge, a structuring assignment. This starting point presents certain givens that define the nature and scope of the project. These givens are the ground from which the participants project their activity, forming a plan of work, extending their attention to potential resources, directing their effort outward. All of these matters, to which people tender their exertion, constitute the materials of the project. The materials surround the givens, so to speak, and move out from immediate matters of obvious relevance to items of more and more distant background significance, which, for one or another reason, a participant chooses to include in the field of attention. In addition to these materials, the givens also define relevant tools and resources, processing strategies, characteristic questions, standards controlling inquiry, heuristics for generating hypotheses and interpretative concepts. In a project, the set of relevant tools, while not rigidly fixed, is relatively stable, and participants use these repeatedly upon different materials. The materials, in contrast, are more extensive, bounded really only by the time and effort available and the law of diminishing returns.

Project pedagogy has thus three main components: the charge, the field, and the tools. The charge sets forth what the task will be, and it should do so in a way that is concrete, explicit, unambiguous, and energizing. It also determines who will pursue the project, whether it is an individual or group project, and when it will start and end. The charge also indicates what field will be pertinent and what tools will be relevant, not by circumscribing these but by providing entry ways into them. The field consists of the information and ideas that may be mobilized in carrying out the charge. When we say that the curriculum of the new system will include more materials than students will learn, we indicate that the field of resources relevant to any charge will always comprise more possibilities than a working group can usefully exhaust. The tools consist of intellectual strategies for bringing information and ideas to bear upon a charge. Each discipline consists of materials and techniques and the former constitutes its field and the latter its tools. As much as possible in the new system, the tools of every discipline should be ready at hand for use: mastering the discipline will consist not in learning how to make its tools but in putting them to constructive use.

Consider some examples of charges that might be put to students. Since the curriculum resources to support such inquiry are not yet in place, we do not have working instances to study, but we can imagine possible projects in different fields. Soon, when we can put them to the test of practice, some will prove more effective than others, but for now, their function is not to stand as a list of perfected, or preferred, exemplars, but to exemplify a type with a set of hypothetical instances, some of which may stand the test of practice, others of which will not.

» Students in the upper school Spanish group have as an on- going project developing a multimedia usage guide to contemporary Spanish. They have access to an extensive collection of Spanish and Latin American movies and television programs, recordings by literary figures and interviews with contemporaries describing school life in Buenos Aires, Mexico City, Bogotá, and Toledo. They have on-line grammars and dictionaries, as well as video and audio editing tools. Some students have been working on the project for three years and they manage the whole team. Essentially the team divides itself up to study new material, checking the existing version of the Guide to uncover examples of new usage, or variant usage, and when they find either, the y log them into the Guide, providing examples and relevant geographical and cultural background material. Via the International SchoolNet, students at many other schools make use of the Guide and frequently send in queries, comments, and suggestions. Students working on the project develop a subtle understanding of Spanish usage and a wide appreciation of the cultural contexts of the language.

» Students, aged ten to twelve, work in teams excavating the Timbuktu site, a hypothetical, but carefully designed, computer simulation of ruins from the Ghana, Mali, and Songhai civilizations in West Africa from the eighth to the sixteenth century. The students use a program called Archaeotype, to excavate, describe, record, and interpret several hundred significant objects that they slowly fit together like a puzzle to reveal long-lost civilizations. The site is somewhat oblong, divided into seven sectors, four running west to east on the northern tier and three on the southern. A team of three works on each sector, with one student specializing in dating and chronology, another in tracing cultural influences and patterns, and a third in reconstructing the human ecology and economy. Sometimes all seven teams meet together to discuss the emerging over-all picture of the site, and sometimes the specialists from each team meet to correlate their findings and to discuss explanatory hypotheses. In addition to containing the site and the tools for its excavation, the program they are using provides them with powerful links to the archaeological and historical sources that can help them make sense of what they find. Increasingly as the project goes on, participants realize that they need to develop an extensive historical horizon in order to make sense of the cultural influences of Islam over many centuries that they are finding evidenced and to understand the remarkably far flung trade relations evident in the artifacts.

» Computers will get the word right, but people will need to know that it is the right word, le mot juste. In mathematics, the computational prowess of the computer will devalue human abilities to calculate precisely, but precision is not tantamount to perfection: numbers can be rung up wrong and blundering formulas entered. Sensing that, in various instances, even though the computer gets the answer right, it is not the right answer will be an increasingly important skill. Estimation techniques will become the stuff of ordinary mathematics. As a result, one can imagine among the many ways that skill at estimation might find its way into the curriculum, development in various sectors of the popular culture of the Reckoning Race, a community contest replacing the old-time Spelling Bee. An extra-curricular group would recruit the school's reckoning racers, the best numerical estimators in each age category. The competition might have three events. First, in the Fast Appraisals, students estimate approximate answers, under intense time constraints, to a sequence of calculations of various types. Second, in the Error Identifications, they track a series of machine calculations, trying to identify which ones, although formally correct, are nevertheless contextually wrong owing to some sort of input error. Third, in the Bug Hunt, they diagnose for a panel of judges the probable cause of the wrong calculations, suggesting steps that might prevent or correct them, and the judges rate the astuteness of their diagnoses. In the emerging computer-assisted culture, reckoning will be a skill all need, and reckoning racers could develop some peer prestige.

» The Poetry Club has become something more than a club. Participants regularly contribute video readings of works composed by them and by their favorite poets. Their friends, and supervising teachers, critique these readings with voice mail, linked to the appropriate places in the video. The Poetry Corner, a conference on the network has a full collection of videos, recordings, and texts on the major poets of the world, living and dead and one afternoon a week a group meets in an assembly room to watch, listen, and discuss. As their graduating presentation, six students work together studying major productions of popular culture from 1950 to 1980, trying to test the hypothesis that during that period composers of music, poetry, and film shifted away from techniques of composition conditioned by the processes of writing, reverting to those associated with oral-epic performance. In three months they will present to the school a booming multimedia documentary on their findings and they are asking a Public Broadcasting Corporation scout to come, hoping she will want it for their national cable list.

» A group of middle and upper school science students have as a project, conducted with several teachers specializing in different aspects of science, an inquiry into the relationship between observation and theory in the development of science. How do scientific instruments shape scientific knowledge? In the historical development of the sciences, how have limitations on the capacity to take and record observations of different kinds of phenomena influenced theoretical explanations of those phenomena? The project team works with simulated instruments and communication resources characteristic of different historical settings in the development of science. They assemble typical observations pertinent to a problem and research the historical theories explaining solutions to it. They brainstorm about alternative theories that might be based on the observations they can assemble and write up these theories in scientific papers that they submit via network to the Academy of Simulated Science, which includes interested adults and other such groups at other schools. They criticize the contributions, usually showing that the proposed theories would not really have been possible given the state of observation and understanding that then prevailed, but occasionally an alternative stands up to the criticism, revealing a possible path of theoretical development in the history of science and technology that might have been taken but was not. Students engaged in this project develop a keen appreciation of the difficulties in carrying out scientific inquiry, as well as extensive knowledge about key scientific problems and the strategies used to solve them.

» Students eight to twelve years-old take part in the Children in World Art Project. The younger ones start by picking several periods and cultures and browsing through the included images of children, working on a presentation explaining their sense of what childhood would have been like in those times and places. Doing this, they begin to research the geographical and historical contexts and start to learn how to empathize with their subjects and to use contextual information to check and test their understandings. The older children help the younger and evaluate the set of images for redundancy and gaps, developing an acquisition search list that they can circulate to curators of museums and collections that may have the sorts of images they want. The project participants use the International SchoolNet to find historical documents that help inform an understanding of the experience depicted in the images. In addition to extracting the representational information about childhood that the images contain, the children will need to respond aesthetically and emotionally to the images, interpreting with them something about the subjective, qualitative experiences that they reveal.

» As satellite based telescopes become more numerous, powerful, and diverse, a tremendous problem of logging all the information sent back will develop. As a solution to that, scientists initiate the National School Space Mapping Project. Each school recruits several teams of three students each to receive and assess data. The scientists overseeing the project assign to each team a small, specific quadrant of the surrounding universe. As data comes back from its diverse sources into various repositories, the International SchoolNet routes all data pertaining to a quadrant to the team that handles it. Each team collects and monitors the data it receives and maintains a full descriptive and explanatory catalogue of what appears in the observations in its quadrant. To do this the teams need to understand the various sorts of telescopic observation techniques and how to apply standard astronomical and astrophysical theory to the astral population of their quadrant. Should a team receive new observations that do not fit within the standard theories, the team will need immediately to alert its supervising scientist. The participating students will learn a great deal about the content and practice of astronomy and they will help absorb into it the wealth of new data that is beginning to flood back to earth.

With such projects, the teacher's role will be to oversee, to manage, and to facilitate inquiry. To start, she will need to mobilize the resources of the profession to set the charge and put it to her students. Defining the mandate for her students will be much like planning a course, although the particulars will differ somewhat. It will begin by selecting a set of particulars that will put a significant intellectual problem to students. This intellectual problem should be such that students will acquire knowledge, skill, and understanding by working to solve it. The problem needs to be put in such a way that students can grasp it and work on it productively. For that to happen, the teacher must ensure that the field within which she has situated the charge has in it a genuinely open-ended range of resources that students can use effectively to fulfill the charge. Likewise, the tools at hand for working on the problem need to be appropriate, usable, and effective. A fascinating charge situated in a rich field without good tools will not lead to an effective project, for students will find themselves unable to exploit the materials before them. Similarly, a good charge and powerful tools deployed in a deficient field will not sustain interest or development. Finally, despite a well-stocked field and first-class intellectual tools, students given a weak charge, one that does not put an energizing, orienting problem to them, will not do much with either the field or their tools.

Some may object that a computer-based project method such as this seems more like the methods used at advanced university levels than something appropriate for elementary and secondary school. The observation would be correct; the inference that this shift would be ill advised may nevertheless be unsound. In many ways, basing education on advanced information technologies will move strategies of college and graduate education down to lower levels. The intellectual context of advanced instruction is not the textbook, but the library and the laboratory, which in the era of print have cost a great deal to assemble and to avail to students. The basic pedagogy challenges advanced students to inquire into the sources of information and ideas through study and experiment and then express their results to a public of peers. Learning occurs in three key activities -- putting the question that generates the inquiry, selecting and evaluating materials potentially relevant to it, and expressing results in ways that others will find clear. Young children can perform these activities. Project methods at their best will transfer this pedagogy for use with less advanced students working on more foundational areas of inquiry.

Why has a project pedagogy been primarily restricted to advanced students? Again, the answer to this question lies, not in the nature of learning, but in the implementation constraints of the print-based system. Does the long selective ascent to graduate school winnow from the many those few who can uniquely learn from open-ended inquiry in a well-stocked library? Well-stocked libraries and well-equipped labs are very costly, and they have low carrying capacities in the sense that only a few can use them at any time lest their usefulness be destroyed. While one person uses a text or lab instrument, others cannot. If, for instance, the scholar working in an academic library too often finds that the text he needs now is in use by someone else, he will find his inquiry slowed significantly and will quickly declare the collection unfit for serious use. Academics restrict access to advanced intellectual tools, not to ensure that someone does not waste his time trying to use tools he cannot productively employ, but rather to ensure that the tools will be in a productive state for those few granted access to them. We very reasonably do not fill the stacks of research libraries with hordes of fifth graders, not because the fifth graders could not learn in the process, but because a rare resource of advanced scholarship would lose its usefulness for that purpose.

Access to information and ideas encoded in digital form will have different constraints from that of print. Provided the networks leading to them have sufficient carrying capacity -- and they soon will -- open access to source collections will not diminish their usefulness for serious scholars. Whoever uses an electronic text uses an ad hoc copy, and it does not matter how many ad hoc copies are in use. All sorts of materials can go to all sorts of users without devaluing the intellectual effectiveness of the work. Climate readings from stations round the world will go simultaneously to the Lamont Geophysical Laboratory and Miss Jones' fourth grade class at PS92 in Harlem and wherever else someone curious about the readings may be. Project pedagogy often failed in the past because students did not have access to the resources needed to inquire effectively into the questions posed to them. That is one of the great limiting factors on human inquiry, whether conducted by the young in their efforts to appropriate their culture or by the expert in their attempts to advance it. Ptolemy got it all wrong, not because he was dumb, but because the observations he could study were too few and too imprecise. Access to information and ideas is opening astoundingly and educators at every level will need to adapt their strategies to the project method to make use of it.

A second reason the project method often failed was that younger students lacked suitable means of expression to carry their inquiry through to some conclusion. The cartoon stereotype of naked children wiggling around the progressive schoolroom, imitating sperm in search of the ovum, reduced the problem to an absurdity. Without adequate tools of expression, inquiry-based learning culminates in an inarticulate collapse. The digitization of our culture, however, provides greater access, not only to information and ideas, but to tools of expression as well. This process is evident with what young children can do with word processors and desktop publishing systems, but that is simply the leading edge of what is in store. Design tools, graphics tools, video production and post-production tools, analytical tools of the most sophisticated sorts, all will be ordinary resources of ordinary schools. Educators will need to adapt their strategies to make use of these as well.

Furthermore, a significant shift of advanced pedagogies to more elementary levels is not unprecedented in historical experience. In the educational transformation of the sixteenth century, the pedagogical activity of the universities shifted downward to the schools much in the way here envisioned. Prior to print, studying subjects for their meaning and significance was the work of the university. Having learned through an arduous preparation to make a dependable written text on hearing it read aloud, the advanced student could then turn to reading and absorbing its significance. The work leading up to that ensured that a student could, hearing complex ideas read aloud in Latin, transcribe them accurately. With that skill acquired, the student could then hear Aristotle, make the text, and discuss its interpretation with others. With print, Aristotle and many other authorities became available in inexpensive editions. Making the text ceased to be the aim of preparatory education; as a result, reading and interpreting the text became a major activity much earlier in the educational process than it had previously been. That, precisely, was the agenda of the newly invented Gymnasium.

Of course, in the sixteenth century, many reasonable people doubted that the substantive study of authority could be done by younger students, for experience had shown that it was the proper concern only of advanced students. For instance, the University of Basel took offense at the curriculum of Thomas Platter's school, because it included the interpretation of texts usually reserved to the university. Over several years the academic authorities maneuvered to require Platter to bring his students to the University for public examination, expecting to prove that his students did not understand the subtleties of the texts he recklessly assigned. When the examinations took place, Platter's students showed a robust comprehension and the University had to accept the idea that younger students could usefully study substantive content. In like manner, as a new system of education emerges, pedagogical concerns hitherto associated with advanced study will become increasingly important throughout earlier stages. This will have deep implications for the profession of teaching.

Improving the Conditions of Teaching
Teaching in the print-based system has required skilled professionals. The earliest Protestant theorists of schooling pointed to the importance of well-trained teachers, if the system were to be effective. And the need has been constant since then. Nevertheless, the conditions of educational work within the print- based system have had significant deficiencies. Teaching a set curriculum with set texts tends to be highly repetitive, year to year, and teachers often find their work routinized. They cannot do much beyond the text and after a few times through, the text be- comes a familiar locale that ceases to challenge their imaginations. This is the basic process of routinization, too often evident in the career of teaching.

Allied to routinization is deskilling, which is a kind of routinization that happens, not as a by-product, but as the purposeful result of policy. When work requires higher levels of skill than the average worker may possess, managers have often tried to simplify the job, believing simplification to be a more economical way to match job with skill than it would be to improve the skills of the worker. Complex tasks once performed somewhat unpredictably by high-paid skilled artisans were analyzed into component steps that anyone, following instructions, could passably perform. Unskilled workers replaced the artisans with the process tightly managed according to the principles of Frederick Winslow Taylor, and the output became predictable and the pro- duction costs minimal. Curriculum developers have sometimes used these techniques to seek a "teacher-proof" curriculum, hoping thereby to better guarantee results and to get by with lower pay for less-skilled teachers. In many industrial walks, such processes have reduced numerous artisans to mere machine-tenders, mindlessly repeating dumb tasks as products wend toward completion along the line.

An industrial system that achieves production efficiencies by steadily lowering the skill requirements in many forms of work over several generations can find itself in trouble should the skill requirements of work suddenly increase. Advanced technologies in the work place have caused precisely this shift in recent decades. In factory and office, deskilling jobs had made much work diseducative. And educational preparation for work in such jobs put a premium on rote learning and routinized teaching in the "factory school" where students were primarily acculturated through drill and practice to follow instructions with uncomprehending accuracy.

Increasingly, high technology reverses the polarity on the skill needs of labor in the industrial and service sectors. Machine- tending jobs, performing a single task according to a prescribed manner in a complex division of labor, are growing scarcer. Process-managing work, controlling a complex system by monitoring information about the condition of its parts, has become more prevalent. In them, a mindless mistake can prove most costly. This shift in polarity carries all the way through the educa- tional enterprise. Learning to learn and critical thinking are fast becoming important educational results, not only for the most successful, but for all who go through the system. In such a situation, the demand arises for more highly skilled, fully engaged teachers. Hence it is becoming socially important, not to simplify instruction so that any teacher, no matter how unskilled, can make it work provided he follows instructions, but to structure it so that the teacher will continually develop his skills, growing more and more adept with more and more experience.

As heuristic guides, nurturing the work of inquiry groups, using powerful intellectual tools in complex fields of information, the challenges on teachers will be great. It is tempting to object that the ordinary teachers will not be well-prepared to perform this role. The span of pedagogical possibility is not fixed forever for teachers, any more than it is for students. How a teacher develops over the course of her career, managing teams of students working with advanced tools of scholarship in open-ended fields of inquiry, may be very different from the way she develops instructing five classes of eighth-graders, year after year, in a set survey of ancient history. The pedagogical shift making advanced methods appropriate at earlier levels will affect teachers as well, making the content of their work more like that of the college professor. Not only will the educative effects of the work itself be different, but with that change, people attracted by the work to the career may alter in ways currently difficult to predict. For better or for worse, work shapes the worker far more than the worker shapes the work. If a new system of education becomes structurally possible, teachers will adapt to its conditions, which, fortuitously, seem expansive and humane.

Changes in these areas -- in the organization of time and space, in motivational strategies, in the presentation of the culture, in the pedagogies guiding its study, and in the character of the teaching profession -- will arise, not as a causal sequence, but as a set of reciprocal interactions. The secret of historical initiative, of voluntary action, lies in this reciprocity -- we can initiate change anywhere within it and once started the changes will propagate interactively around the system. Nevertheless, one needs some sort of starting point, a way to begin. What might be a good way to initiate changes that can reciprocally reinforce themselves and spread through the system, transforming it all around?298 Consider as a possibility the potentials of computer networking. Networks are essential components of the computer as a system. They are developing rapidly in power; they are proliferating, squirming wires quickly wrapping the globe in a pulsing mesh of messages. Telephones, television, and computers are fusing together in ways that can pervade the schools and provoke key changes in them. Advanced networks can trigger changes in the environment, motivation, cultural organization, educational method, and the teaching profession in ways that will reciprocally propagate.

Let's look briefly at how networks can influence each of these areas. No one domain will come first; rather they will all come at once, each reinforcing the others.

» If the entire school plant of the nation had to be rebuilt in order to accommodate alternative groupings in time and space, thorough-going change would be impossible. But networks will make possible the "virtual rebuilding" of everyday schools. Networks will enable computer-based work groups to function well without being together in space and time. Sub-groups in different classrooms will link together electronically and function as a unit. E-mail, voice-mail, and video-mail will give a measure of interpersonal immediacy to the collaboration. Current structures that seem to rigidly impose set routines will become sites of great flexibility, if effectively networked.

» Networks will greatly facilitate collaborative activities among students working on projects. Asynchronous communication improves the ability of people to work together without loosing their autonomy. Networks further ease the sharing and managing of common information and ideas. Students can manage the logistics of cooperation more effectively and networks will help them work together to interpret mutual results.

» Networking is, of course, fundamental in achieving the curricular condition where all cultural contents and pedagogical resources are accessible to all students and all teachers all the time. Networking, however, is not only a necessary condition for bringing this condition about; it may more interestingly be a sufficient condition -- in a well- networked school, all academic resources will be available to all at all times unless authorities impose access restrictions to prevent it. Thus, should powerful networks proliferate into schools, very probably the information base for the cumulative curriculum will be in place, whether or not the managers of those schools intended to construct it.

» Intensive networking of schools will encourage a shift in educational strategy towards the project method. One can imagine using a network as an infrastructure for group recitation, and there will surely be times when such uses of it will be important and valuable. But networks are switching systems that do not particularly conduce to actions in unison, but rather facilitate branching out and linking by people who are doing different things while working together on a shared project. Powerful networks that give lots of people access to lots of resources will sprout projects spontaneously -- interest groups on this and that -- and educators will scamper to capitalize on these spontaneous energies by shifting instructional emphasis more and more to a project method.

» Networking, in and between schools, will also shift the professional ethos in teaching away from routinization. Teaching is now rarely a highly collegial profession because the structure of the curriculum and the classroom tend to seal teachers off from intensive interaction with their peers. Networks will help teachers collaborate with each other, within the on-going flow of daily activity, much more than they do now, to pool classes, to share problems and techniques, to develop special competencies and interests, and to refer students with specific needs and concerns to each other for help. Networks will allow teachers to work together through the walls of their separate classrooms and across the periods of their schedule.

In these ways, introducing powerful networks, and all the associated computing resources that might come with them, can forcefully prod the system to change. But can the polity rouse itself to initiate such investments? To what degree would the public sustain the costs of such efforts? We turn, thus, to our concluding question, what civic agenda for education will best actualize the pedagogical potentials of digital technologies?


Table of Contents

Chapter 6